Simplified Framework

Agent Scope X Cloudflare Workers X Algolia Search X R2 Bucket Storage

Technical Assessment: Algolia + R2 Solves Core Constraints

Algolia integration addresses the R2 queryability limitation effectively. Manticore Search introduces unnecessary complexity for your current architecture needs.

Why Algolia + R2 Works

R2 for storage + Algolia for instant search creates the optimal data flow:

  • Store full context documents in R2 (no size limits)

  • Index metadata and searchable fields in Algolia

  • Sub-100ms query response times globally

  • Vector similarity search through Algolia's built-in capabilities

Manticore adds another database layer without solving constraints that Algolia doesn't already handle:

  • Deployment complexity: Additional server/container management

  • Data synchronization: Three-way sync between R2, Algolia, and Manticore

  • Query fragmentation: Different query languages across systems

Constraint principle: Fewer moving parts = higher reliability.

Simplified Implementation Plan

Phase 1: Core System (1 week)

  1. AgentScope agents with constraint-led prompts

  2. Cloudflare Worker for context injection (edge-deployed)

  3. Algolia index for decision history search

  4. R2 bucket for full context storage

Phase 2: Context Intelligence (1 week)

  1. Decision logging pipeline to R2 + Algolia

  2. Similarity search for relevant historical context

  3. Constraint extraction from project roadmap

  4. Alignment scoring based on constraint adherence

Phase 3: Multi-Agent Coordination (1 week)

  1. MsgHub integration for transparent message passing

  2. Sequential pipeline for domain processing workflow

  3. Error handling and alignment violation detection

  4. Performance monitoring dashboard

Critical Implementation Details

Algolia Index Structure

json

{
  "objectID": "agent_001_1672531200",
  "agent_id": "content_strategist",
  "task": "Create content strategy for domain X", 
  "decision": "Focus on long-tail keywords...",
  "alignment_score": 0.87,
  "constraints_followed": ["2000+ words", "SEO optimized"],
  "timestamp": "2024-01-01T00:00:00Z",
  "domain_category": "saas",
  "success_indicators": ["traffic_increase", "authority_score"]
}

R2 Document Structure

json

{
  "decision_id": "agent_001_1672531200",
  "full_context": {
    "strategic_prompt": "...",
    "agent_reasoning": "...",
    "constraint_analysis": "...",
    "execution_steps": [...]
  },
  "performance_metrics": {
    "execution_time": 2.3,
    "context_relevance": 0.92,
    "outcome_success": true
  }
}

Edge Context Injection Flow

User RequestCloudflare WorkerAlgolia Query (similar decisions) → R2 Fetch (full context) → Context InjectionAgentScope AgentDecision LoggingR2 + Algolia Storage

Latency target: <200ms for context retrieval and injection globally.

Constraint Validation Logic

python

def validate_constraints(task: str, decision: str, agent_type: str) -> float:
    """Return alignment score 0-1"""
    
    required_constraints = get_constraints_for_agent_type(agent_type)
    
    score = 0.0
    for constraint in required_constraints:
        if constraint_satisfied(constraint, decision):
            score += 1.0 / len(required_constraints)
    
    # Penalty for constraint violations
    violations = detect_violations(decision, required_constraints)
    score -= len(violations) * 0.2
    
    return max(0.0, min(1.0, score))

Deployment Sequence

Week 1: Foundation

  • Deploy Cloudflare Worker for context injection

  • Set up Algolia index with initial schema

  • Create R2 bucket with lifecycle policies

  • Build basic AgentScope agents

Week 2: Integration

  • Connect agents to context injection system

  • Implement decision logging pipeline

  • Test end-to-end workflow with 3 domains

  • Monitor performance and alignment scores

Week 3: Scaling

  • Deploy to 10-20 domains

  • Tune constraint validation logic

  • Optimize context retrieval performance

  • Build monitoring dashboard

Reality Check: Viable 3-Week Timeline

This simplified architecture is actually achievable in 3 weeks because:

  • AgentScope handles agent coordination complexity

  • Cloudflare Workers provide zero-config edge deployment

  • Algolia eliminates custom search engine development

  • R2 requires minimal configuration

The constraint-led approach focuses on proving the core concept rather than building comprehensive enterprise features.

Start with the Cloudflare Worker context injection. That's the highest-leverage component that enables everything else.

#!/usr/bin/env python3
"""
Simplified LEVERAGEAI Multi-Agent System
Core components: AgentScope + Cloudflare Workers + Algolia + R2
"""

import asyncio
import json
from datetime import datetime
from typing import Dict, List, Optional, Any
from dataclasses import dataclass, asdict
import hashlib
import logging

from agentscope.agents import ReActAgent
from agentscope.message import Msg
from agentscope.pipeline import MsgHub, sequential_pipeline
from sentence_transformers import SentenceTransformer
import aiohttp


@dataclass
class AgentDecision:
    """Simple decision tracking structure"""
    agent_id: str
    timestamp: datetime
    task: str
    decision: str
    constraints_followed: List[str]
    alignment_score: float


@dataclass
class ContextPacket:
    """Lightweight context package for agent injection"""
    relevant_constraints: List[str]
    similar_decisions: List[str]
    roadmap_alignment: str
    execution_guidance: str


class SimplifiedContextManager:
    """Lightweight context management using Algolia + R2"""
    
    def __init__(self, algolia_app_id: str, algolia_api_key: str):
        self.algolia_app_id = algolia_app_id
        self.algolia_api_key = algolia_api_key
        self.encoder = SentenceTransformer('all-MiniLM-L6-v2')
        
        # Core constraints for LEVERAGEAI
        self.project_constraints = {
            "technical": [
                "Sub-2s page load times",
                "90+ PageSpeed scores", 
                "Zero downtime deployment"
            ],
            "content": [
                "2000+ word articles",
                "Authority building focus",
                "SEO optimization required"
            ],
            "revenue": [
                "Conversion-optimized funnels",
                "$200K+ MRR target",
                "Scalable monetization"
            ]
        }
        
        self.roadmap_phases = {
            "foundation": "Domain network setup and optimization",
            "scaling": "Content automation and authority building", 
            "revenue": "Monetization and client acquisition"
        }
    
    async def inject_context(self, agent_id: str, task: str) -> ContextPacket:
        """Get relevant context for agent task"""
        
        # 1. Find relevant constraints
        relevant_constraints = self._extract_relevant_constraints(task)
        
        # 2. Query Algolia for similar successful decisions
        similar_decisions = await self._query_similar_decisions(task)
        
        # 3. Determine roadmap alignment
        roadmap_alignment = self._assess_roadmap_alignment(task)
        
        # 4. Generate execution guidance
        execution_guidance = self._generate_guidance(
            task, relevant_constraints, roadmap_alignment
        )
        
        return ContextPacket(
            relevant_constraints=relevant_constraints,
            similar_decisions=similar_decisions,
            roadmap_alignment=roadmap_alignment,
            execution_guidance=execution_guidance
        )
    
    def _extract_relevant_constraints(self, task: str) -> List[str]:
        """Extract constraints relevant to task"""
        task_lower = task.lower()
        relevant = []
        
        for category, constraints in self.project_constraints.items():
            for constraint in constraints:
                # Simple keyword matching - can be enhanced
                if any(word in task_lower for word in constraint.lower().split()[:2]):
                    relevant.append(f"{category}: {constraint}")
        
        return relevant
    
    async def _query_similar_decisions(self, task: str) -> List[str]:
        """Query Algolia for similar successful decisions"""
        
        # This would be actual Algolia API call
        # For now, return mock data structure
        mock_decisions = [
            "Domain setup: Used Cloudflare for CDN + security",
            "Content strategy: Focused on long-tail keywords",
            "Revenue: Implemented multi-tier pricing"
        ]
        
        return mock_decisions[:2]  # Limit to prevent context bloat
    
    def _assess_roadmap_alignment(self, task: str) -> str:
        """Assess which roadmap phase task aligns with"""
        task_lower = task.lower()
        
        phase_keywords = {
            "foundation": ["domain", "setup", "infrastructure", "cloudflare"],
            "scaling": ["content", "automation", "seo", "article"],
            "revenue": ["monetization", "revenue", "conversion", "client"]
        }
        
        for phase, keywords in phase_keywords.items():
            if any(keyword in task_lower for keyword in keywords):
                return f"Phase: {phase} - {self.roadmap_phases[phase]}"
        
        return "Phase: General - Cross-phase activity"
    
    def _generate_guidance(self, task: str, constraints: List[str], 
                         alignment: str) -> str:
        """Generate constraint-led execution guidance"""
        
        guidance = f"CONSTRAINT-LED APPROACH:\n"
        guidance += f"1. Primary constraints: {', '.join(constraints[:2])}\n"
        guidance += f"2. Roadmap alignment: {alignment}\n"
        guidance += f"3. Design within constraint boundaries first\n"
        guidance += f"4. Optimize for reliability over features\n"
        
        return guidance
    
    async def log_decision(self, decision: AgentDecision):
        """Log agent decision to R2 + Algolia for future reference"""
        
        # Create document for Algolia indexing
        algolia_doc = {
            "objectID": f"{decision.agent_id}_{int(decision.timestamp.timestamp())}",
            "agent_id": decision.agent_id,
            "task": decision.task,
            "decision": decision.decision,
            "alignment_score": decision.alignment_score,
            "timestamp": decision.timestamp.isoformat(),
            "constraints": decision.constraints_followed
        }
        
        # Store full decision in R2, index metadata in Algolia
        await self._store_to_r2(decision)
        await self._index_to_algolia(algolia_doc)
    
    async def _store_to_r2(self, decision: AgentDecision):
        """Store complete decision data to R2"""
        # R2 storage implementation
        decision_data = asdict(decision)
        decision_data['timestamp'] = decision.timestamp.isoformat()
        
        # Would use Cloudflare R2 API here
        logging.info(f"Storing decision to R2: {decision.agent_id}")
    
    async def _index_to_algolia(self, doc: Dict):
        """Index decision metadata to Algolia for search"""
        # Algolia indexing implementation
        logging.info(f"Indexing to Algolia: {doc['objectID']}")


class ConstraintLedAgent(ReActAgent):
    """AgentScope agent with constraint-led architecture"""
    
    def __init__(self, name: str, specialization: str, context_manager: SimplifiedContextManager, **kwargs):
        super().__init__(name=name, **kwargs)
        self.specialization = specialization
        self.context_manager = context_manager
        
        # Override system prompt
        self.sys_prompt = f"""You are {name}, specializing in {specialization}.

CORE PRINCIPLES:
1. CONSTRAINTS FIRST: Identify limitations before solutions
2. SIMPLE & ROBUST: Fewer components, higher reliability  
3. DOCUMENT DECISIONS: Record reasoning for alignment tracking
4. ESCALATE CONFLICTS: Flag constraint violations immediately

You receive strategic context before each task. Use this context to make constraint-aware decisions.

Specialization: {specialization}
"""
    
    async def reply(self, x: Msg) -> Msg:
        """Process message with constraint-led approach"""
        
        # 1. Get strategic context
        context = await self.context_manager.inject_context(self.name, x.content)
        
        # 2. Build enhanced prompt with context
        enhanced_content = self._build_contextual_prompt(x.content, context)
        
        # 3. Create enhanced message
        enhanced_msg = Msg(
            name=x.name,
            content=enhanced_content,
            role=x.role
        )
        
        # 4. Process with parent ReAct logic
        response = await super().reply(enhanced_msg)
        
        # 5. Log decision
        await self._log_agent_decision(x.content, response.content, context)
        
        return response
    
    def _build_contextual_prompt(self, task: str, context: ContextPacket) -> str:
        """Build prompt with injected context"""
        
        prompt = f"""STRATEGIC CONTEXT:

RELEVANT CONSTRAINTS:
{chr(10).join(f"- {constraint}" for constraint in context.relevant_constraints)}

SIMILAR SUCCESSFUL APPROACHES:
{chr(10).join(f"- {decision}" for decision in context.similar_decisions)}

ROADMAP ALIGNMENT:
{context.roadmap_alignment}

EXECUTION GUIDANCE:
{context.execution_guidance}

CURRENT TASK: {task}

Execute with constraint-led architecture principles.
"""
        return prompt
    
    async def _log_agent_decision(self, task: str, response: str, context: ContextPacket):
        """Log decision for learning and alignment"""
        
        decision = AgentDecision(
            agent_id=self.name,
            timestamp=datetime.now(),
            task=task,
            decision=response,
            constraints_followed=context.relevant_constraints,
            alignment_score=0.8  # Would calculate based on constraint adherence
        )
        
        await self.context_manager.log_decision(decision)


class CloudflareWorkerManager:
    """Manage Cloudflare Worker deployment for edge context"""
    
    @staticmethod
    def generate_context_worker() -> str:
        """Generate simplified Cloudflare Worker for context injection"""
        
        return """
// Simplified Context Injection Worker
export default {
  async fetch(request, env, ctx) {
    const url = new URL(request.url);
    
    if (url.pathname === '/context') {
      return handleContextRequest(request, env);
    }
    
    return new Response('Context service active');
  }
};

async function handleContextRequest(request, env) {
  const { agent_id, task } = await request.json();
  
  try {
    // 1. Query Algolia for similar decisions
    const algoliaResponse = await fetch(
      `https://${env.ALGOLIA_APP_ID}-dsn.algolia.net/1/indexes/agent_decisions/query`,
      {
        method: 'POST',
        headers: {
          'X-Algolia-API-Key': env.ALGOLIA_SEARCH_KEY,
          'X-Algolia-Application-Id': env.ALGOLIA_APP_ID,
          'Content-Type': 'application/json'
        },
        body: JSON.stringify({
          query: task,
          hitsPerPage: 3,
          filters: `alignment_score > 0.7`
        })
      }
    );
    
    const algoliaData = await algoliaResponse.json();
    
    // 2. Build context packet
    const contextPacket = {
      similar_decisions: algoliaData.hits.map(hit => hit.decision),
      constraints: getRelevantConstraints(task),
      guidance: generateExecutionGuidance(task)
    };
    
    return new Response(JSON.stringify(contextPacket), {
      headers: { 'Content-Type': 'application/json' }
    });
    
  } catch (error) {
    return new Response(JSON.stringify({ error: error.message }), {
      status: 500,
      headers: { 'Content-Type': 'application/json' }
    });
  }
}

function getRelevantConstraints(task) {
  const constraints = {
    domain: ['Sub-2s load time', 'SSL required'],
    content: ['2000+ words', 'SEO optimized'],
    revenue: ['Conversion tracking', 'Scalable pricing']
  };
  
  const taskLower = task.toLowerCase();
  
  if (taskLower.includes('domain') || taskLower.includes('infrastructure')) {
    return constraints.domain;
  } else if (taskLower.includes('content') || taskLower.includes('article')) {
    return constraints.content;
  } else if (taskLower.includes('revenue') || taskLower.includes('monetization')) {
    return constraints.revenue;
  }
  
  return ['Follow project objectives', 'Document decisions'];
}

function generateExecutionGuidance(task) {
  return `
CONSTRAINT-LED APPROACH:
1. Identify limiting factors first
2. Design within constraint boundaries
3. Optimize for reliability over features
4. Document decision rationale
  `;
}
"""


class SimplifiedOrchestrator:
    """Main orchestrator for simplified multi-agent system"""
    
    def __init__(self, algolia_app_id: str, algolia_api_key: str):
        self.context_manager = SimplifiedContextManager(algolia_app_id, algolia_api_key)
        self.agents = {}
    
    async def initialize_core_agents(self):
        """Initialize the three core agents"""
        
        agent_configs = [
            {
                'name': 'content_agent',
                'specialization': 'content_strategy_and_seo'
            },
            {
                'name': 'infrastructure_agent', 
                'specialization': 'technical_infrastructure'
            },
            {
                'name': 'revenue_agent',
                'specialization': 'revenue_optimization'
            }
        ]
        
        for config in agent_configs:
            agent = ConstraintLedAgent(
                name=config['name'],
                specialization=config['specialization'],
                context_manager=self.context_manager,
                model_config_name="claude_config"
            )
            
            self.agents[config['name']] = agent
        
        logging.info("Initialized 3 core agents with constraint-led architecture")
    
    async def execute_domain_task(self, domain: str, task_type: str) -> Dict:
        """Execute single domain task with appropriate agent"""
        
        agent_mapping = {
            'content': 'content_agent',
            'infrastructure': 'infrastructure_agent', 
            'revenue': 'revenue_agent'
        }
        
        agent_name = agent_mapping.get(task_type, 'content_agent')
        agent = self.agents[agent_name]
        
        task = Msg(
            name="orchestrator",
            content=f"Execute {task_type} optimization for domain: {domain}",
            role="user"
        )
        
        result = await agent.reply(task)
        
        return {
            'domain': domain,
            'task_type': task_type,
            'agent': agent_name,
            'result': result.content,
            'timestamp': datetime.now().isoformat()
        }
    
    async def process_domain_batch(self, domains: List[str]) -> Dict:
        """Process batch of domains through simplified pipeline"""
        
        results = {}
        
        for domain in domains:
            domain_results = {}
            
            # Execute each task type for domain
            task_types = ['content', 'infrastructure', 'revenue']
            
            for task_type in task_types:
                result = await self.execute_domain_task(domain, task_type)
                domain_results[task_type] = result
                
                logging.info(f"Completed {task_type} for {domain}")
            
            results[domain] = domain_results
        
        return results


# Deployment helper
class DeploymentManager:
    """Manage deployment of simplified system components"""
    
    @staticmethod
    async def deploy_cloudflare_worker(account_id: str, api_token: str):
        """Deploy context injection worker to Cloudflare"""
        
        worker_script = CloudflareWorkerManager.generate_context_worker()
        
        # Deploy to Cloudflare via API
        async with aiohttp.ClientSession() as session:
            response = await session.put(
                f"https://api.cloudflare.com/client/v4/accounts/{account_id}/workers/scripts/context-injector",
                headers={
                    "Authorization": f"Bearer {api_token}",
                    "Content-Type": "application/javascript"
                },
                data=worker_script
            )
            
            if response.status == 200:
                logging.info("Context injection worker deployed successfully")
                return True
            else:
                logging.error(f"Worker deployment failed: {response.status}")
                return False
    
    @staticmethod
    def setup_algolia_index():
        """Setup Algolia index for agent decisions"""
        
        index_config = {
            "searchableAttributes": [
                "task",
                "decision", 
                "agent_id"
            ],
            "attributesForFaceting": [
                "agent_id",
                "alignment_score",
                "timestamp"
            ],
            "customRanking": [
                "desc(alignment_score)",
                "desc(timestamp)"
            ]
        }
        
        logging.info("Algolia index configuration ready")
        return index_config


# Usage example
async def main():
    """Example usage of simplified system"""
    
    # Initialize orchestrator
    orchestrator = SimplifiedOrchestrator(
        algolia_app_id="your_app_id",
        algolia_api_key="your_api_key"
    )
    
    await orchestrator.initialize_core_agents()
    
    # Process batch of domains
    test_domains = ["leverageai.com", "automate-everything.com"]
    results = await orchestrator.process_domain_batch(test_domains)
    
    print(f"Processed {len(test_domains)} domains:")
    for domain, domain_results in results.items():
        print(f"\n{domain}:")
        for task_type, result in domain_results.items():
            print(f"  {task_type}: {result['result'][:100]}...")


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    asyncio.run(main())