Code Standards Example

This is an example and specific platforms are subject to change. We will be using meilosearch instead of algolia for the forseeable future.

LEVERAGEAI Coding Standards Analysis

Conversation Context

This conversation revealed a critical systems architecture challenge: building a multi-agent AI orchestration system that prevents context fragmentation and alignment drift while scaling to 500+ domains.

The journey exposed a fundamental constraint in current AI agent systems: agents lose alignment with project objectives as context fragments across handoffs and time.

Key Insights Discovered

  1. The Core Problem: Not AI capability, but orchestration architecture

  2. The Constraint: Context fragmentation kills multi-agent systems faster than individual agent failures

  3. The Solution: Strategic context injection with constraint-led architecture

  4. The Trap: Complexity creep (15+ systems) vs. simplified viable core (3 components)

LEVERAGEAI Principles Demonstrated

  • Constraint-led: Identify limiting factors before solutions

  • Elegant Simplicity: Fewer components, higher reliability

  • Explicit over Implicit: No hidden magic, transparent operations

  • Architecture First: System design precedes implementation


Code Standards Comparison

Pattern 1: Multi-Agent Context Management

<table> <tr> <th width="50%">❌ Base Approach (Fragile)</th> <th width="50%">✅ LEVERAGEAI Standard (Robust)</th> </tr> <tr> <td>

# Typical agent implementation
class Agent:
    def __init__(self, name):
        self.name = name
        self.memory = []  # Unbounded growth
    
    def process(self, task):
        # No context validation
        result = self.llm_call(task)
        self.memory.append(result)  # Memory leak
        return result
    
    def llm_call(self, prompt):
        # Direct API call, no error handling
        response = api.call(prompt)
        return response.text

Failure Points:

  • Unbounded memory growth → OOM crashes

  • No constraint checking → drift from objectives

  • No error handling → silent failures

  • No decision logging → can't debug issues

  • Implicit state management → unpredictable behavior

</td> <td>

# LEVERAGEAI constraint-led implementation
@dataclass
class AgentDecision:
    agent_id: str
    timestamp: datetime
    task: str
    decision: str
    constraints_followed: List[str]
    alignment_score: float

class ConstraintLedAgent(ReActAgent):
    def __init__(self, name: str, specialization: str, 
                 context_manager: ContextManager):
        super().__init__(name=name)
        self.specialization = specialization
        self.context_manager = context_manager
        self.max_memory_items = 100  # Explicit constraint
    
    async def reply(self, x: Msg) -> Msg:
        # 1. Inject strategic context
        context = await self.context_manager.inject_context(
            self.name, x.content
        )
        
        # 2. Validate alignment
        if context.alignment_score < 0.7:
            return self._escalate_alignment_issue(x, context)
        
        # 3. Execute with error handling
        try:
            response = await self._execute_with_context(x, context)
        except Exception as e:
            return self._handle_failure(x, e)
        
        # 4. Log decision for learning
        await self._log_decision(x.content, response, context)
        
        return response

Design Principles:

  • Explicit memory constraints prevent growth issues

  • Alignment validation prevents drift

  • Error handling with escalation paths

  • Decision logging enables debugging

  • Structured state management

</td> </tr> </table>


Pattern 2: Database Design for Agent Context

<table> <tr> <th width="50%">❌ Base Approach (Unscalable)</th> <th width="50%">✅ LEVERAGEAI Standard (Scalable)</th> </tr> <tr> <td>

# Storing everything in one big blob
class ContextStore:
    def __init__(self):
        self.contexts = {}  # In-memory only
    
    def save_context(self, agent_id, context):
        # No structure, no validation
        self.contexts[agent_id] = context
    
    def get_context(self, agent_id):
        # No error handling
        return self.contexts[agent_id]
    
    def search_similar(self, query):
        # Brute force search - O(n)
        results = []
        for ctx in self.contexts.values():
            if query in str(ctx):
                results.append(ctx)
        return results

Failure Points:

  • In-memory only → lost on restart

  • No persistence → no learning

  • O(n) search → doesn't scale

  • No data validation → corrupt state

  • No indices → slow queries

  • No backup strategy → data loss

</td> <td>

# LEVERAGEAI: Hybrid storage with clear separation
class HybridContextStore:
    def __init__(self):
        # R2 for full documents (cold storage)
        self.r2_client = R2Client()
        
        # Algolia for fast search (hot index)
        self.algolia = AlgoliaClient()
        
        # Local cache for active contexts
        self.cache = TTLCache(maxsize=100, ttl=900)
    
    async def save_context(self, context: AgentDecision):
        """Store with validation and redundancy"""
        
        # 1. Validate structure
        if not self._validate_context(context):
            raise ValueError("Invalid context structure")
        
        # 2. Store full document in R2
        await self.r2_client.put(
            f"contexts/{context.agent_id}/{context.timestamp}",
            json.dumps(asdict(context))
        )
        
        # 3. Index searchable fields in Algolia
        await self.algolia.save_object({
            'objectID': context.context_hash,
            'agent_id': context.agent_id,
            'task': context.task,
            'alignment_score': context.alignment_score,
            'timestamp': context.timestamp.isoformat()
        })
        
        # 4. Update cache
        self.cache[context.context_hash] = context
    
    async def search_similar(self, query: str, limit: int = 5):
        """Sub-100ms semantic search"""
        
        # Algolia handles the heavy lifting
        results = await self.algolia.search(
            query=query,
            filters='alignment_score > 0.7',
            hitsPerPage=limit
        )
        
        # Fetch full contexts from R2 only if needed
        full_contexts = []
        for hit in results['hits']:
            if hit['objectID'] in self.cache:
                full_contexts.append(self.cache[hit['objectID']])
            else:
                # Lazy load from R2
                ctx = await self.r2_client.get(
                    f"contexts/{hit['agent_id']}/{hit['timestamp']}"
                )
                full_contexts.append(ctx)
        
        return full_contexts

Design Principles:

  • Separation of concerns: R2 (storage) vs Algolia (search)

  • Explicit caching strategy with TTL

  • Validation before storage

  • Fast search through specialized indexing

  • Graceful degradation (cache miss → R2 fetch)

</td> </tr> </table>


Pattern 3: Constraint Validation

<table> <tr> <th width="50%">❌ Base Approach (Implicit)</th> <th width="50%">✅ LEVERAGEAI Standard (Explicit)</th> </tr> <tr> <td>

# Hope-based constraint checking
def process_task(task):
    # No constraint definition
    result = do_work(task)
    
    # Validation happens too late
    if result.success:
        return result
    else:
        # Unclear what went wrong
        return "Failed"

def do_work(task):
    # Constraints buried in implementation
    if len(task) > 1000:  # Magic number
        return None
    
    # No explanation of why
    data = fetch_data()
    
    # Implicit assumptions
    processed = transform(data)
    
    return processed

Failure Points:

  • No explicit constraint declaration

  • Magic numbers without context

  • Validation happens after work (waste)

  • Unclear failure reasons

  • No constraint propagation to other agents

  • Implicit assumptions break silently

</td> <td>

# LEVERAGEAI: Constraints as first-class citizens
@dataclass
class TaskConstraints:
    """Explicit constraint declaration"""
    max_task_length: int = 500  # Character limit
    required_keywords: List[str] = field(default_factory=list)
    forbidden_patterns: List[str] = field(default_factory=list)
    alignment_threshold: float = 0.7
    execution_timeout: int = 30  # seconds
    
    def validate(self, task: str) -> Tuple[bool, List[str]]:
        """Return (is_valid, violations)"""
        violations = []
        
        if len(task) > self.max_task_length:
            violations.append(
                f"Task exceeds {self.max_task_length} chars"
            )
        
        for keyword in self.required_keywords:
            if keyword.lower() not in task.lower():
                violations.append(
                    f"Missing required keyword: {keyword}"
                )
        
        for pattern in self.forbidden_patterns:
            if pattern in task:
                violations.append(
                    f"Contains forbidden pattern: {pattern}"
                )
        
        return len(violations) == 0, violations

def process_task(task: str, constraints: TaskConstraints):
    """Constraint-led execution"""
    
    # 1. Validate BEFORE work
    is_valid, violations = constraints.validate(task)
    
    if not is_valid:
        return TaskResult(
            success=False,
            reason="Constraint violations",
            violations=violations,
            suggestion="Adjust task to meet constraints"
        )
    
    # 2. Work within validated boundaries
    try:
        with timeout(constraints.execution_timeout):
            result = do_work(task)
    except TimeoutError:
        return TaskResult(
            success=False,
            reason=f"Timeout after {constraints.execution_timeout}s",
            suggestion="Simplify task or increase timeout"
        )
    
    # 3. Validate output against constraints
    if result.alignment_score < constraints.alignment_threshold:
        return TaskResult(
            success=False,
            reason="Alignment drift detected",
            alignment_score=result.alignment_score,
            suggestion="Review strategic context"
        )
    
    return TaskResult(success=True, data=result)

Design Principles:

  • Constraints declared upfront, not buried

  • Validation before execution (fail fast)

  • Clear violation messages

  • Explicit timeout handling

  • Alignment validation integrated

  • Actionable error messages

</td> </tr> </table>


Pattern 4: Error Handling & Recovery

<table> <tr> <th width="50%">❌ Base Approach (Brittle)</th> <th width="50%">✅ LEVERAGEAI Standard (Resilient)</th> </tr> <tr> <td>

# Pray-and-hope error handling
async def call_llm(prompt):
    response = await api.call(prompt)
    return response.text

async def process_batch(items):
    results = []
    for item in items:
        # One failure kills entire batch
        result = await call_llm(item)
        results.append(result)
    return results

# No retry logic
# No fallback strategy
# No partial success handling
# No error logging

Failure Points:

  • Single failure cascades to entire batch

  • No retry logic for transient errors

  • No fallback when primary service fails

  • No visibility into what failed

  • No partial success recovery

  • Silent failures in production

</td> <td>

# LEVERAGEAI: Defense in depth
from tenacity import retry, stop_after_attempt, wait_exponential

@dataclass
class ExecutionResult:
    success: bool
    data: Optional[Any]
    error: Optional[str]
    retries: int
    fallback_used: bool

class ResilientExecutor:
    def __init__(self):
        self.primary_llm = ClaudeAPI()
        self.fallback_llm = OpenRouterAPI()
        self.circuit_breaker = CircuitBreaker(
            failure_threshold=5,
            timeout=60
        )
    
    @retry(
        stop=stop_after_attempt(3),
        wait=wait_exponential(multiplier=1, min=2, max=10)
    )
    async def call_llm(self, prompt: str) -> ExecutionResult:
        """Call LLM with automatic retry"""
        
        try:
            # Check circuit breaker
            if self.circuit_breaker.is_open():
                return await self._use_fallback(prompt)
            
            # Try primary service
            response = await self.primary_llm.call(prompt)
            self.circuit_breaker.record_success()
            
            return ExecutionResult(
                success=True,
                data=response.text,
                error=None,
                retries=0,
                fallback_used=False
            )
            
        except APIError as e:
            self.circuit_breaker.record_failure()
            
            # Use fallback automatically
            logging.warning(f"Primary failed: {e}. Using fallback.")
            return await self._use_fallback(prompt)
    
    async def _use_fallback(self, prompt: str) -> ExecutionResult:
        """Fallback to secondary LLM"""
        try:
            response = await self.fallback_llm.call(prompt)
            return ExecutionResult(
                success=True,
                data=response.text,
                error=None,
                retries=0,
                fallback_used=True
            )
        except Exception as e:
            return ExecutionResult(
                success=False,
                data=None,
                error=str(e),
                retries=3,
                fallback_used=True
            )
    
    async def process_batch(self, items: List[str]) -> Dict:
        """Process batch with partial success handling"""
        
        results = {
            'successful': [],
            'failed': [],
            'total': len(items)
        }
        
        # Process with bounded parallelism
        semaphore = asyncio.Semaphore(5)
        
        async def process_item(item):
            async with semaphore:
                result = await self.call_llm(item)
                if result.success:
                    results['successful'].append({
                        'item': item,
                        'result': result.data,
                        'fallback_used': result.fallback_used
                    })
                else:
                    results['failed'].append({
                        'item': item,
                        'error': result.error
                    })
        
        await asyncio.gather(*[process_item(item) for item in items])
        
        return results

Design Principles:

  • Automatic retry with exponential backoff

  • Circuit breaker prevents cascade failures

  • Fallback strategy for degraded operation

  • Partial success handling (batch resilience)

  • Explicit error tracking and logging

  • Bounded parallelism prevents resource exhaustion

</td> </tr> </table>


Pattern 5: Agent Handoff & Context Preservation

<table> <tr> <th width="50%">❌ Base Approach (Context Loss)</th> <th width="50%">✅ LEVERAGEAI Standard (Context Preserved)</th> </tr> <tr> <td>

# Lossy handoff between agents
class AgentCoordinator:
    def handoff(self, from_agent, to_agent, task):
        # Just pass the task string
        result = from_agent.execute(task)
        
        # Context lost in handoff
        return to_agent.execute(result)

# Agent has no idea what came before
class Agent:
    def execute(self, input):
        # Starting from scratch
        return self.llm_call(
            f"Do this: {input}"
        )

Failure Points:

  • No context preservation across agents

  • No success criteria communicated

  • No constraint propagation

  • No decision rationale passed

  • Each agent reinvents the wheel

  • Alignment drift between agents

</td> <td>

# LEVERAGEAI: Structured context preservation
@dataclass
class HandoffDocument:
    """Complete context transfer between agents"""
    handoff_id: str
    from_agent: str
    to_agent: str
    timestamp: datetime
    
    # Task context
    task_summary: str
    original_objective: str
    
    # Decision context
    decisions_made: List[Dict[str, Any]]
    reasoning: str
    
    # Constraint context
    constraints_applied: List[str]
    constraints_for_next: List[str]
    
    # Success criteria
    success_criteria: List[str]
    failure_conditions: List[str]
    
    # Critical knowledge
    key_learnings: List[str]
    potential_issues: List[str]
    
    # Metadata
    estimated_complexity: int
    suggested_approach: Optional[str]

class StructuredHandoff:
    def __init__(self, context_store):
        self.context_store = context_store
    
    async def create_handoff(
        self,
        from_agent: str,
        to_agent: str,
        task_result: Any,
        context: Dict
    ) -> HandoffDocument:
        """Create rich handoff document"""
        
        handoff = HandoffDocument(
            handoff_id=self._generate_id(),
            from_agent=from_agent,
            to_agent=to_agent,
            timestamp=datetime.now(),
            task_summary=context['task'],
            original_objective=context['original_objective'],
            decisions_made=context['decisions'],
            reasoning=context['reasoning'],
            constraints_applied=context['constraints_used'],
            constraints_for_next=context['next_constraints'],
            success_criteria=self._extract_success_criteria(
                task_result, context
            ),
            failure_conditions=self._identify_failure_modes(
                task_result, context
            ),
            key_learnings=context.get('learnings', []),
            potential_issues=context.get('risks', []),
            estimated_complexity=self._estimate_complexity(context),
            suggested_approach=context.get('suggestion')
        )
        
        # Store for audit and learning
        await self.context_store.save_handoff(handoff)
        
        return handoff
    
    async def execute_handoff(
        self,
        handoff: HandoffDocument,
        receiving_agent: Agent
    ) -> Any:
        """Execute handoff with full context"""
        
        # Build context-rich prompt
        context_prompt = f"""
HANDOFF FROM: {handoff.from_agent}
ORIGINAL OBJECTIVE: {handoff.original_objective}

PREVIOUS DECISIONS:
{self._format_decisions(handoff.decisions_made)}

REASONING:
{handoff.reasoning}

CONSTRAINTS TO FOLLOW:
{chr(10).join(f"- {c}" for c in handoff.constraints_for_next)}

SUCCESS CRITERIA:
{chr(10).join(f"- {c}" for c in handoff.success_criteria)}

KEY LEARNINGS:
{chr(10).join(f"- {l}" for l in handoff.key_learnings)}

POTENTIAL ISSUES TO WATCH:
{chr(10).join(f"- {i}" for i in handoff.potential_issues)}

YOUR TASK: {handoff.task_summary}

{handoff.suggested_approach or ''}
"""
        
        # Execute with preserved context
        result = await receiving_agent.execute_with_context(
            context_prompt,
            handoff
        )
        
        return result

Design Principles:

  • Structured context preservation

  • Explicit success criteria communication

  • Constraint propagation across agents

  • Decision rationale preserved

  • Learning transfer between agents

  • Audit trail for debugging

</td> </tr> </table>


Key Architectural Differences

Base Approach Characteristics

  • Implicit complexity: Hidden state, magic behavior

  • Hope-driven: Assumes things will work

  • Fail-slow: Errors discovered late

  • Feature-first: Add capabilities without constraint analysis

  • Monolithic thinking: Everything in one place

LEVERAGEAI Approach Characteristics

  • Explicit constraints: Limitations declared upfront

  • Design-driven: Constraints shape architecture

  • Fail-fast: Validate before executing

  • Constraint-first: Identify limits before solutions

  • Modular thinking: Separation of concerns with clear interfaces


Real-World Impact

Manticore Search Decision

Base Approach: "Let's add Manticore Search for better full-text search capabilities!"

LEVERAGEAI Analysis:

  1. Constraint: Need queryable context storage

  2. Existing solution: Algolia + R2 already covers this

  3. Cost of addition: Another database to sync, deploy, maintain

  4. Benefit: Marginal improvement over Algolia

  5. Decision: Skip Manticore. Fewer moving parts, same capability.

Agent Coordination Simplification

Original proposal: 15+ systems (AgentScope + Agent Goose + Blitzy + NotebookLM + Manticore + ...)

LEVERAGEAI refinement: 3 core systems (AgentScope + Cloudflare Workers + Algolia + R2)

Result: 80% reduction in complexity while maintaining 100% of core functionality.


Implementation Timeline Comparison

Base Approach

  • Week 1-4: Set up 15 different systems

  • Week 5-8: Debug integration issues

  • Week 9-12: Realize overengineered, start simplifying

  • Month 4+: Rebuild with simpler architecture

  • Total: 4+ months to viable system

LEVERAGEAI Approach

  • Week 1: Core agents + context injection

  • Week 2: Decision logging + search

  • Week 3: Multi-agent coordination

  • Total: 3 weeks to production-ready system


Conclusion

LEVERAGEAI coding standards prioritize:

  1. Constraint identification before solution design

  2. Explicit over implicit in all architecture decisions

  3. Fail-fast validation to prevent cascading failures

  4. Structured context preservation across boundaries

  5. Resilient execution with fallbacks and retries

  6. Elegant simplicity - fewer components, higher reliability

The difference isn't just code style - it's architectural thinking that prevents entire classes of failures before they occur.